
International Journal of Scientific & Engineering Research Volume 8, Issue 6, June-2017 644
ISSN 2229-5518

IJSER © 2017
http://www.ijser.org

Deploying a Simulated RISC Style Pipelined
Processor for Evaluating Stall Estimation Metric

against Weyuker’s Properties
Amit Pandey, K. P. Yadav

Abstract— Stall estimation metric considers program dependencies together with statement count for determining the software complexity.
In this study, we have evaluated the stall estimation metric against the different Weyuker's properties. Further, we have used these results
to compare the stall estimation metric with other existing software metrics. We have generated a simulated pipelined RISC processor to
evaluate various cases. Various test cases were generated by taking stall causing data dependencies together in account with stall causing
control dependencies. Then we have practically implemented these cases on a simulated pipelined RISC processor to obtain the results in
form of printed pulse patterns. Using the results obtained from the study, we have shown that stall estimation metric is an efficient metric
that follows all the nine Weyuker's properties.

Index Terms— Stall estimation metric, Software Complexity, Architectural metric, Weyuker’s Properties, Code complexity, Complexity
metric, Program complexity.

—————————— ——————————

1 INTRODUCTION
UMEROUS software metrics have been proposed

by researchers till date [1],[2]. Some of them analyze
the structure of code lines or the arrangement of code

blocks in the software [3],[4],[5]. While, others analyze how
they are processed on the hardware platform by studying any
dependencies between them [3],[6]. Stall estimation metric
belongs to the later class that studies the dependencies on a
hardware plateform to determine the complexity of any pro-
gram [7].

In last three decades lots of work has been done in the field
of software complexity estimation and numerous metrics have
been proposed by researchers. But most of the work done fo-
cuses the code metrics and scope for further exploration in the
field of architectural metrics is still open.

Kafura has studied the information flow of the system and
proposed some architectural metrics [8]. He stated that any
module in the system with higher information flow is consi-
dered to be more complex than any other module which has
lower information flow. The key problem with these informa-
tion flow metrics is that they were defined using some infor-
mal structure charts and unlike the proposed metrics they are
incapable of incorporating all the system architecture
attributes properly.

Zhao has defined architectural metrics based on the count
of dependence arcs present in an architectural dependence
graph of software architecture. He considered the total num-
ber of existing program and architectural dependencies as
measure for estimating the software complexity [3]. Further in
the same category of architectural metrics, Stall estimation
metric was proposed in 2016, this metric considers the number

of stalls induced during the resolution of dependencies to-
gether with the count of statements actually executed as
measure for evaluating software complexity [7],[9]. The Stall
estimation metric considers only the stall inducing dependen-
cies. As other dependencies can be resolved by simply data
forwarding between the stages of the processor and will not

actually affect the execution time of the program.
Considering the information provided in Table 1, the com-

plexity estimation of any program using Stall estimation me-
tric (SEC) can be expressed as,

SEC = Sc+2.DLd.Br.a+DLd.Br.b+DLd.ALU+DALU.Br+BrPr (1)
Where,
SEC = Software complexity using Stall estimation metric.

DLd.Br.a = Occurrences of data dependency when Control
instruction (Branch instruction) is just after Load instruction as
mentioned in Case I (1).
DLd.Br.b = Occurrences of data dependency when Control
instruction (Branch instruction) is third instruction after Load
instruction as mentioned in Case I (2). Here there is no stall
inducing dependency between Load and the next following
instruction.
DLd.ALU = Occurrences of data dependency when the ALU
instruction is just after the Load instruction as mentioned in
Case II.
DALU.Br = Occurrences of data dependency when Control
instruction (Branch instruction) is just after ALU instruction as

N

TABLE 1
STALL LATENCIES IN A FIVE STAGE PIPELINED RISC PROCESSOR

————————————————
• Amit Pandey is Ph.D scholar of Computer Science at Sunrise University

Alwar, India. E-mail: amit.pandey@live.com
• Dr. K. P. Yadav (Superviser) is associated with IIMT College of Enginer-

ing, Gr Noida, India. E-mail: drkpyadav732@gmail.com

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 8, Issue 6, June-2017 645
ISSN 2229-5518

IJSER © 2017
http://www.ijser.org

mentioned in Case III.
BrPr = Considering the worst case, induction of one stall cycle
during the resolution of Control hazards.
Sc = It is the count of statements in the program that are ac-
tually executed.

Our current study is focused on evaluation of Stall estima-
tion metric against Weyuker’s Properties. In this study, we
have designed various test cases to chek Stall estimation me-
tric, against Weyuker’s Properties, by executing them on a
simulated RISC style, pipelined processor.

Table 2 shows the instruction set for the simulated RISC
processor [10]. The opcodes mentioned in the table are re-
quired to comprehend the results achieved from the simula-
tion.

In the results obtained from the simulated processor. The
four-bit value from WIR15 to WIR12 represents the opcode of
the executed instruction. Here, WIR15 is the most significant
bit. In addition, eight-bit value from RD7 to RD0 represents
the output. Here, RD7 is the most significant bit.

2 EVALUATION OF STALL ESTIMATION METRIC
AGAINST WEYUKER’S PROPERTIES

Weyuker has proposed nine properties which are used as cri-
teria to test the effectiveness of any software metrics
[11],[12],[13],[14],[15],[16]. More the number of properties any
software metric satisfies, better it is. In this part of study, we
will evaluate the proposed stall estimation metric against
Weyuker's properties and show that the proposed metric fol-
lows all nine properties.

2.1 Property 1: There exist two programs P and Q such
that |P| ≠ |Q|.
P and Q are two programs with different complexity values.

Program P:
Load R1, #3
Load R2, #1
ADD R3, R2, R1

When we analyze the simulation results of program P for
property 1 (See Fig. 1). We will see that there is one stall in-
duced between the second load and third instruction. There-
fore, the complexity of the code will be,
SEC_1P = Sc + DLd.ALU = 3 + 1 = 4

Program Q:
Load R1, #3
Load R2, #1
ADD R3, R2, R1
ADD R4, R3, R1
SUB R5, R4, R1

Now after analyzing the results of program Q for property
1 (See Fig. 2). We find that there is one stall between the second
load and third instruction. Therefore, the complexity of the
code will be,
SEC_1Q = Sc + DLd.ALU = 5 + 1 = 6

Hence, in this case we have shown that |P| ≠ |Q|.

TABLE 2
INSTRUCTION SET FOR SIMULATED PROCESSOR

Fig. 1. Simulation result of program P for property 1.

Fig. 2. Simulation result of program Q for property 1.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 8, Issue 6, June-2017 646
ISSN 2229-5518

IJSER © 2017
http://www.ijser.org

2.2 Property 2: For any non-negative number 'C', there
are only finite many programs with complexity 'C'.

As for the proposed Stall estimation metric, the estimation of
software complexity is based on the sum of statement count
and the number of stalls in the program. Therefore, it can easi-
ly be perceived that there will be only finite possible combina-
tions of defined stall cases and program statements resulting
in fixed software complexity of 'C'.

2.3 Property 3: There are distinct programs P and Q
such that |P| = |Q|.

Below are two programs P and Q with same complexity value.

Program P:
Load R1, #3
Load R2, #1
ADD R3, R2, R1
BREQ R1, R3, #2

Analyzing the simulation results of program P for property
3 (See Fig. 3). We will see that there are two stalls induced be-
tween the Second Load and third instruction and third Add
instruction and last instruction. So, the complexity of the code
can be evaluated as,
SEC_3P = Sc + DLd.ALU + DALU.Br
= 4 + 1 + 1 = 6

Program Q:
Load R1, #3
Load R2, #1
ADD R3, R2, R1
ADD R4, R1, R3
SUB R5, R4, R1

While analyzing the results of program Q for property 3
(See Fig. 4). We find that there is one stall between the second
load instruction and third instruction. Therefore, the complexi-
ty of the code will be,
SEC_3Q = Sc + DLd.ALU
= 5 + 1 = 6

Hence, in this case we have shown that |P| = |Q|.

2.4 Property 4: There exist two equivalent programs P
and Q such that |P| ≠ |Q|.

This property states that for any program there can be another
more complex program with same functionality. To prove this
we have considered the two programs P and Q, which will left
shift any binary number by three places.

Program P:
Load R2, #3
Load R1, #1
LShift R3, R1, R2

Analyzing the simulation result of program P for property
4 (See Fig. 5). We will see that there is single stall induced be-
tween the Second Load and third instruction. So the complexi-
ty of the program can be evaluated as,
SEC_4P = Sc + DLd.ALU
= 3 + 1 = 4

Program Q:

Fig. 3. Simulation result of program P for property 3.

Fig. 4. Simulation result of program Q for property 3.

Fig. 5. Simulation result of program P for property 4.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 8, Issue 6, June-2017 647
ISSN 2229-5518

IJSER © 2017
http://www.ijser.org

Load R1, #1
Add R2, R1, R1
Add R3, R2, R2
Add R4, R3, R3

While analyzing the simulation result for program Q for
property 4 (See Fig. 6). We find that there is one stall between
the first load instruction and second instruction. So the com-
plexity of the code will be,
SEC_4Q = Sc + DLd.ALU
= 4 + 1 = 5

Hence, in this case we have shown that |P| ≠ |Q|.

2.5 Property 5: For all programs P and Q, |P| ≤ |P:Q|
and |Q| ≤ |P:Q|

Let us consider that |P| is SEC_|P| and |Q| is SEC_|Q|.
Then software complexity for the concatenated program P:Q
will be,

|P:Q| = SEC_|P| + SEC_|Q| + C (2)

Here,

()
()

0 WhenthereisnodependencebetweenPandQ
C

NumberofStalls WhenstallinducingdependencesexistebetweenPandQ
=

So, from the above expression (2) it can be inferred that,
|P| < |P:Q| and |Q| < |P:Q|

2.6 Property 6: Exists programs P, Q and R. Such that,
a) |P| = |Q| and |P:R| ≠ |Q:R| holds.
b) |P| = |Q| and |R:P| ≠ |R:Q| holds.
Also for both the cases 6 (a) and 6 (b), |P:R| ≠ |R:P|.

Let there exist programs P, Q and R, as shown below. Here,
register R1and R4 are type of data segment register and stores
static, extern and global values.

Program P:

ADDImm R1, R1, #2
ADDImm R2, R0, #2
ADD R3, R2, R2

Here, the Complexity value for P will be (See Fig. 7),
SEC_6P = Sc = 3

Program Q:
ADDImm R2, R0, #1
ADD R3, R2, R2
Load R4, #2

Here, the Complexity value for Q will be (See Fig. 8),
SEC_6Q = Sc = 3

Program R:
ADDImm R5, R4, #3
Load R1, #3

Proof for 6(a). At this point, it can be concluded from Fig.7

Fig. 6. Simulation result of program Q for property 4.

Fig. 7. Simulation result of program P for property 6.

Fig. 8. Simulation result of program Q for property 6.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 8, Issue 6, June-2017 648
ISSN 2229-5518

IJSER © 2017
http://www.ijser.org

and Fig. 8 that |P| = |Q|.
Now, simulation result for |P:R| is (See Fig. 9),

The Complexity value for |P:R| will be,
SEC_6aPR = Sc = 5

Also, simulation result for |Q:R| is (See Fig. 10),

There is a stall inducing dependency between last instruc-
tion of Q and first instruction of R. Due to which the Com-
plexity value for |Q:R| comes out to be,
SEC_6aQR = Sc + DLd.ALU
= 5 + 1 = 6

Now using the results of both the simulations (See Fig.9,
Fig.10), it can be clearly stated that,
|P:R| ≠ |Q:R|

Proof for 6(b): As from Fig. 7 and Fig. 8, it is clear that |P| =
|Q|.

Now, simulation result for |R:P| is (See Fig. 11),

There is a stall inducing dependency between last instruc-
tion of R and first instruction of P. Due to which the Complex-
ity value for |R:P| comes out to be,
SEC_6bRP = Sc + DLd.ALU
= 5 + 1 = 6

Also, simulation result for |R:Q| is (See Fig. 12),

The Complexity value for |R:Q| will be,
SEC_6bRQ = Sc = 5

Now using the results of both the simulations (See Fig.11,
Fig.12), it can be clearly stated that,
|R:P| ≠ |R:Q|

In addition, if we will see we will find that requirement for
considering 6(a) and 6(b) as two different cases is also satis-
fied. That is,
|P:R| ≠ |R:P|

As, complexity values for |P:R| and |R:P| are 5 and 6 re-
spectively.

2.7 Property 7: There are programs P and Q. Such that

Fig. 9. Simulation result of program P:R for property 6(a).

Fig. 10. Simulation result of program Q:R for property 6(a).

Fig. 11. Simulation result of program R:P for property 6(b).

Fig. 12. Simulation result of program R:Q for property 6(b).

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 8, Issue 6, June-2017 649
ISSN 2229-5518

IJSER © 2017
http://www.ijser.org

program Q can be obtained by permuting
statements of program P, and |P| ≠ |Q|.

Here we have two programs P and Q. The program Q is ob-
tained after permuting the statements of P.

Program P:
Load R1, #3
ADDImm R2, R1, #1
ADDImm R3, R0, #3
ADD R4, R3, R2

There is a data dependency between the first load instruc-
tion and second instruction. This will induce stall between
them. This can also be seen in simulation result (See Fig. 13).
So the software complexity can be calculated as,
SEC_7P = Sc + DLd.ALU = 4 + 1 = 5

Program Q:
Load R1, #3
ADDImm R3, R0, #3
ADDImm R2, R1, #1
ADD R4, R3, R2

Here, the software complexity can be calculated as shown
below. This can also be verified from the simulation result
shown in Fig. 14.

SEC_7Q = Sc = 4

Hence, we have shown that in this case |P| ≠ |Q|.

2.8 Property 8: If P is renamed to Q. Then |P| = |Q|.
This property states that for two given programs P and Q,
where Q is obtained by renaming P, such that the meaning of
the program is conserved. Then |P| = |Q|. Let us consider
two programs P and Q.

Program P:
Load R1, #3
Load R2, #1
Add R3, R1, R2

Here there is stall inducing data dependency between
second load and last instruction (See Fig. 15). So the software
complexity can be calculated as,
SEC_8P = Sc + DLd.ALU
= 3 + 1 = 4

Program Q:
Load R4, #3
Load R5, #1
Add R6, R4, R5

Here there is stall inducing data dependency between
second load and last instruction (See Fig. 15). So the software
complexity can be calculated as,
SEC_8Q = Sc + DLd.ALU
= 3 + 1 = 4

Hence, we have shown that in this case |P| = |Q|.

2.9 Property 9: There are programs P and Q. Such that
|P| + |Q| < |P:Q|.

Let us consider two programs P and Q as given below.

Program P:
ADDImm R2, R0, #1
ADD R3, R2, R2
ADDImm R3, R3, #2
Load R4, #2

Simulation result of program P is shown in Fig 16. The pro-

Fig. 13. Simulation result of program P for property 7.

Fig. 14. Simulation result of program Q for property 7.

Fig. 15. Simulation result of programs P and Q for property 8.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 8, Issue 6, June-2017 650
ISSN 2229-5518

IJSER © 2017
http://www.ijser.org

gram complexity in this case can be evaluated as shown be-
low,
SEC_9P = Sc = 4

Program Q:
ADDImm R4, R4, #2
Load R1, #3
ADDImm R5, R1, #4

Here, the second load instruction and last instruction has a
stall inducing data dependency. This can also be seen in the
simulation result shown in Fig. 17. Now, the software com-
plexity can be evaluated as,
SEC_9Q = Sc + DLd.ALU
= 3 + 1 = 4

Now we execute the concatenation of program P and Q to

obtain the simulation result shown in Fig. 18. There is stall
inducing data dependency between last instruction of P and
first instruction of Q. Also one stall inducing data dependency
is present inside Program Q as mentioned above. Keeping
these things in mind the software complexity can be evaluated
as,
SEC_9PQ = Sc + DLd.ALU

= 7 + 2 = 9

Hence from the above results it can be inferred that,

|P| + |Q| < |P:Q|
As, (4 + 4) < 9

3 COMPARING STALL ESTIMATION METRIC WITH
OTHER POPULAR METRICS

Numerious metrics have been proposed by the researchers till
date. Among those metrics, Statement count metric, Halstead
complexity metric, Cyclomatic complexity metric, Data flow
complexity metric and Cognitive complexity metric are the
varients explored most by the researchers.

The statement count metric usually considers the count of
lines in the program and can be viewed as the measure of the
program size [17].

As each operand is associated with a logic. The Halstead
complexity metric measures the logic volume of the program
by taking in account the count of operators and operands
present in the program [4],[17].

In 1976, Thomas J. McCabe proposed a new Cyclomatic
complexity metric that takes in account the topological order-
ing of the program for estimating the software complexity. It
considers the count of linearly independent paths in the pro-
gram as measure for estimating the software complexity [5].

On the other hand data flow complexity metric takes in ac-
count the use-definition graph of the program for estimating
the software complexity. It considers only those edges in the
graph which contributes in data flow between the blocks. The
concept is that the program complexity will increase if the va-
riable definition and usage both are in different blocks [18].

Further in cognitive complexity metric the complication in
logical composition of the program is studied. The cognitive
complexity metric indirectly reflects the efforts required in
perceiving the meaning of the program [15],[19].

Now, we will judge all these metrics against nine Weyu-
ker’s Properties (See Table 3).

Fig. 16. Simulation result of programs P for property 9.

Fig. 17. Simulation result of programs Q for property 9.

Fig. 18. Simulation result of programs P:Q for property 9.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 8, Issue 6, June-2017 651
ISSN 2229-5518

IJSER © 2017
http://www.ijser.org

4 CONCLUSION
In the current study, we have tested the Stall estimation metric
against the nine Weyuker’s Properties and found that all of
them are satisfied by the proposed metric. This makes the
proposed metric as one of the preeminent available software
metric that can be used for estimating the software complexi-
ty.

REFERENCES
[1] N. Fenton and J. Bieman, Software metrics: a rigorous and practical ap-

proach. CRC Press, 2014.
[2] H. Zuse, "Software complexity," NY, USA: Walter de Cruyter, 1991.
[3] J. Zhao, "On assessing the complexity of software architectures,"

Proceedings of the third international workshop on Software architecture.
ACM, 1998. doi:10.1145/288408.288450.

[4] M. H. Halstead, Elements of software science. Vol. 7. New York: Elsevi-
er, 1977.

[5] T. J. McCabe, "A complexity measure," IEEE Transactions on software
Engineering 4: 308-320, 1976. doi:10.1109/TSE.1976.233837.

[6] R. Kazman and M. Burth, "Assessing Architectural Complexity,"
Proceedings of the 2nd Euromicro Conference on Software Maintenance and
Reengineering (CSMR'98). IEEE Computer Society, 1998.
doi:10.1109/CSMR.1998.665762.

[7] A. Pandey, "Stall estimation metric: An architectural metric for esti-
mating software complexity," Reliability, Infocom Technologies and Op-
timization (Trends and Future Directions)(ICRITO), 2016 5th Internation-
al Conference on. IEEE, 2016. doi: 10.1109/ICRITO.2016.7784987.

[8] S. Henry and D. Kafura, "Software structure metrics based on infor-
mation flow," IEEE transactions on Software Engineering 5: 510-518,
1981. doi:10.1109/TSE.1981.231113.

[9] A. Pandey, "Study of data hazard and control hazard resolution
techniques in a simulated five stage pipelined RISC processor," In-
ventive Computation Technologies (ICICT), International Conference on.
Vol. 2. IEEE, 2016. doi:10.1109/INVENTIVE.2016.7824864.

[10] A. Pandey, " Simulating a pipelined RISC processor," Inventive Computa-
tion Technologies (ICICT), International Conference on. Vol. 2. IEEE,
2016. doi: 10.1109/INVENTIVE.2016.7824854.

[11] E. J. Weyuker, "Evaluating software complexity measures," IEEE
transactions on Software Engineering 14.9: 1357-1365, 1988.
doi:10.1109/32.6178.

[12] S. Misra and I. Akman, "Applicability of weyuker's properties on oo
metrics: Some misunderstandings," Computer Science and Information
Systems 5.1: 17-23, 2008.

[13] D. Mishra, "New Inheritance Complexity Metrics for Object-Oriented
Software Systems: An Evaluation with Weyuker's Properties," Com-
puting and Informatics 30.2 : 267-293, 2012.

[14] P. Gandhi and P. K. Bhatia, "Analytical analysis of generic reusabili-
ty: Weyuker’s Properties," IJCSI International Journal of Computer
Science Issues 9.2, 2012.

[15] S. Misra and A. K. Misra, "Evaluating cognitive complexity measure
with Weyuker properties," Cognitive Informatics, 2004. Proceedings of
the Third IEEE International Conference on. IEEE, 2004.
doi:10.1109/COGINF.2004.1327464.

[16] D. Beyer and P. Häring, "A formal evaluation of DepDegree based on
weyuker's properties," Proceedings of the 22nd International Conference
on Program Comprehension. ACM, 2014. doi:10.1145/2597008.2597794.

[17] S. Yu and S. Zhou, "A survey on metric of software complexity,"
Information Management and Engineering (ICIME), 2010 The 2nd IEEE
International Conference on. IEEE, 2010.

[18] E. I. Oviedo, "Control flow, data flow and program complexity,"
Software engineering metrics I. McGraw-Hill, Inc., 1993.

[19] S. Misra, "Validating modified cognitive complexity measure," ACM
SIGSOFT Software Engineering Notes 32.3: 1-5, 2007.
doi:10.1145/1241572.1241583.

TABLE 3
COMPARING METRICS ON THE SCALE OF NINE WEYUKER’S PROPERTIES

IJSER

http://www.ijser.org/

	1 Introduction
	2 Evaluation of Stall Estimation Metric Against Weyuker’s Properties
	2.1 Property 1: There exist two programs P and Q such that |P| ≠ |Q|.
	2.2 Property 2: For any non-negative number 'C', there are only finite many programs with complexity 'C'.
	Property 3: There are distinct programs P and Q such that |P| = |Q|.
	Property 4: There exist two equivalent programs P and Q such that |P| ≠ |Q|.
	Property 5: For all programs P and Q, |P| ≤ |P:Q| and |Q| ≤ |P:Q|
	Property 6: Exists programs P, Q and R. Such that,
	Property 7: There are programs P and Q. Such that program Q can be obtained by permuting statements of program P, and |P| ≠ |Q|.
	Property 8: If P is renamed to Q. Then |P| = |Q|.
	Property 9: There are programs P and Q. Such that |P| + |Q| < |P:Q|.

	3 Comparing Stall Estimation Metric with other popular Metrics
	4 Conclusion
	References

